Identification and characterization of the Escherichia coli gene dsbB, whose product is involved in the formation of disulfide bonds in vivo.
نویسندگان
چکیده
We have identified and characterized the Escherichia coli gene dsbB, whose product is required for disulfide bond formation of periplasmic proteins, by using two different approaches: (i) screening of a multicopy plasmid library for clones which protect E. coli from the lethal effects of dithiothreitol (DTT), and (ii) screening of insertion libraries of E. coli for DTT-sensitive mutants. Mapping and characterization of mutations conferring a DTT-sensitive phenotype also identified the dsbA, trxA, and trxB genes, whose products are involved in different oxidation-reduction pathways. Null mutations in dsbB conferred pleiotropic phenotypes such as sensitivity to benzylpenicillin and inability to support plaque formation of filamentous phages, and they were shown to severely affect disulfide bond oxidation of secreted proteins such as OmpA and beta-lactamase. These phenotypes resemble the phenotype of bacteria carrying either a null mutation in the dsbA gene or the double mutation dsbA dsbB. Sequencing and expression of the dsbB gene revealed that it encodes a 20-kDa protein predicted to possess an "exchangeable" disulfide bond in -Cys-Val-Leu-Cys-. The dsbB gene maps at 26.5 min on the genetic map of the E. coli chromosome, and its transcription is directed from two promoters, neither of which resembles the canonical E sigma 70-recognized promoter.
منابع مشابه
Elucidation of Electron Transfer Pathways During Oxidative Protein Folding in Escherichia Coli
8 3.1. Catalysis of oxidative protein folding 8 3.2 De novo formation of disulfide bonds in E. coli: the discovery of DsbA 9 3.3. DsbA is the most oxidizing disulfide catalyst 11 3.4. DsbB provides the periplasm with oxidizing power 15 3.5. Correcting wrong disulfide bonds in the periplasm: disulfide bond isomerization by DsbC 18 3.6. DsbD provides reducing equivalents in a highly oxidizing env...
متن کاملDisulfide bond formation by exported glutaredoxin indicates glutathione's presence in the E. coli periplasm.
Organisms have evolved elaborate systems that ensure the homeostasis of the thiol redox environment in their intracellular compartments. In Escherichia coli, the cytoplasm is kept under reducing conditions by the thioredoxins with the help of thioredoxin reductase and the glutaredoxins with the small molecule glutathione and glutathione reductase. As a result, disulfide bonds are constantly res...
متن کاملSoluble Expression of Recombinant Nerve Growth Factor in Cytoplasm of Escherichia coli
Background: Pivotal roles of Nerve growth factor (NGF) in the development and survival of both neuronal and non-neuronal cells indicate its potential for the treatment of neurodegenerative diseases. However, investigation of NGF deficits in different diseases requires the availability of properly folded human b-NGF. In previous studies bacterial expression of hNGF demonstrated the feasibility o...
متن کاملA pathway for disulfide bond formation in vivo.
Protein disulfide bond formation in Escherichia coli requires the periplasmic protein DsbA. We describe here mutations in the gene for a second protein, DsbB, which is also necessary for disulfide bond formation. Evidence suggests that DsbB may act by reoxidizing DsbA, thereby regenerating its ability to donate its disulfide bond to target proteins. We propose that DsbB, an integral membrane pr...
متن کاملAAN82231 protein from uropathogenic E. coli CFT073 is a close paralog of DsbB enzymes and does not belong to the DsbI family.
Dsb proteins control the formation and rearrangement of disulfide bonds during the folding of membrane and exported proteins. DsbA is an oxidant that catalyzes formation of disulfide bonds in newly synthesized, and yet unfolded proteins. In order to act catalytically again, it has to be reoxidized by a transmembrane protein DsbB characterized by two pairs of disulfides. DsbB is related to anoth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 90 15 شماره
صفحات -
تاریخ انتشار 1993